
1

STELLAR ATMOSPHERES AND SPECTROSCOPY: INTERPRETING THREE
DIMENSIONAL HYDRODYNAMIC SIMULATIONS WITH PYTHON

Guy Leckenby, Martin Asplund, Remo Collet

Research School of Astronomy and Astrophysics,
The Australian National University, Canberra, ACT 2611, Australia

ABSTRACT

The spectra produced by astronomical objects provides us with a vast amount of information on the chemical composition and
structure of the object. For stars, the most luminous astronomical objects, these spectra are produced in the upper atmosphere and
hence accurate modelling of the photosphere and chromosphere are required to draw correct conclusions from the spectra observed.
Recent advances in the understanding of spectral lines in stars and an increase in computational capacity have lead to much more
complex three dimensional hydrodynamic time-dependent models which have demonstrated excellent agreement with observation.
This paper demonstrates the elegance of using Python to provide an interpretive interface for these models as well as providing
reasons for why astrophysical computing as a field is moving towards Python as the language of choice. This is demonstrated
by the introduction of a rudimentary Python module for interfacing with the 3D models accompanied by comparative plotting
examples of a variety of profiles. Suggestions are also provided for further improvements and expansions for the module for wider
astronomical use in stellar modelling.

I. INTRODUCTION

As light is the main source of information we receive from
outside the solar system, it is essential to understand the spectra
of astronomical objects to understand the universe. In particular
the spectra of stars are crucial as they are the most common
luminous object in the universe and the light we receive from
them informs our understanding of their own internal structures
but also the other visible objects in the universe through photon
interactions. The spectra studied from stars are absorption
spectra produced in the stars atmosphere. The absorption is
with respect to the continuum spectrum of the star where
the continuum is generated by the super heated gas in the
photosphere which produces a smooth intensity distribution
[1]. Gas that exists in the chromosphere then absorbs from the
continuum to produce the observed absorption spectra. Hence
a full understanding of the processes occurring inside stellar
atmospheres is crucial for understanding the structures of the
universe.

A good example of the importance of understanding stellar
atmospheres is the importance of hydrogen. Hydrogen is the
most abundant element in stellar atmospheres and hence it is a
good characterising element for determining the properties of
the star via spectroscopy. Due to its simple atomic structure,
hydrogen is much more sensitive to the atmospheric properties
than heavier elements [2] and hence the wings and core
structure of the absorption lines relate directly to atmospheric
conditions [3]. The Balmer series in particular is commonly
used to study stellar atmospheres as it occupies the visible
region taking advantage of the opacity of the atmosphere for
ground observations. As the lower levels of the hydrogen atom
are much more frequently populated, significant opacity is
produced at the core of the absorption lines whilst interactions
with charged species and other hydrogen atoms result in
extended wings. Furthermore, as hydrogen forms the main
continuum opacity source, changes in hydrogen abundance
barely affect the line’s strengths and as gravity and heavy
element abundance produce weak effects on the absorption line,

surface temperature perturbation has the most dramatic effect
in determining the shape of the Balmer lines [2]. Hence, the
Balmer lines are a very powerful surface temperature indicators
and as they are reddening independent they may, in principle,
provide an accuracy on the order of 50 K [4].

Understanding of the stellar atmosphere does not stop with
hydrogen however. The entire chemical composition of stars, in
particular our sun, is derived from absorption spectra. Chemical
abundance data also informs our understanding of the internal
workings of stars and thus comparison with observed spectra
provides a fundamental comparison with helioseismologic
models [5]. Understanding stellar compositions is also essential
for determining the spread of elements in other astronomical
objects as each stellar system is believed to have been generated
from the same nebula.

For stellar spectra to be used for these purposes however,
powerfully predictive models are needed. Due to the complexity
of a stellar atmosphere, a vast collection of factors affect the
observed wing shape. In particular, the absorption coefficient is
affected by normal absorption (natural broadening), the velocity
of the absorbing particle (thermal Doppler and microturbulent
broadening), interactions with charged particles (linear Stark
broadening), and interactions with neutral particles (van der
Waals broadening) [6]. Early models such as those by Vidal
et. al. [7] have now been superseded by more powerful and
comprehensive calculations.

With recent advances in computational capacity, the classical
approximations used in previous stellar atmospheric models
have been challenged. In particular, the assumptions of a
static 1D atmosphere with a mixing length treatment of
convection and the assumption of local thermal equilibrium
(LTE) throughout the atmosphere have attracted significant
scrutiny [9]. Whilst no model is yet able to fully remove both
of these assumptions simultaneously, attempts have been made
to remove each individually. For the geometrical assumption,
there has been significant development in full three dimensional
hydrodynamical time-dependent simulations of convection

G. Leckenby et. al. 2

(referred to hereafter as 3D models) for application to the solar
photosphere [4][5]. These predictions from these 3D models
are in excellent agreement with the observed spectra the for
Hα and Hβ Balmer lines which Fuhrmann et. al. [8] claim
are the most powerful benchmarks for atmospheric models.
Furthermore, the 3D models correctly predict the lifetimes and
sizes of solar granulation observed at high spatial resolution[9].
However the radical prediction of significantly lowered oxygen,
carbon and nitrogen abundances by the 3D models have led to
considerable disagreement with helioseismological models of
the stellar interior. Whilst this presents concerning implications,
the 3D models have significantly more predictive power over
the stellar spectrum than the previous 1D LTE models [10].

II. INTERACTING WITH THE 3D MODELS

As with all complex computational models, an accessi-
ble interface is needed for the results to be of scientific
value. The remainder of this paper will examine an interface
for the hydrodynamic 3D models, in particular using the
Python programming language. The 3D modelling considered
here is the 3D, radiative, hydrodynamical, and conservative
STAGGER-CODE[11]. This model employs a rectangular section
of the solar atmosphere with, for example, dimensions of
6 × 6 × 3.8 Mm3 which has a Cartesian resolution of 2403

data points. The horizontal grid is equally placed whilst the
vertical grid is non-linear to accommodate for higher resolution
over high temperature gradients. The top and bottom edges
of the simulation are open, transmitting boundaries to allow
for appropriate handling of free convection flows to ensure
realistic treatment[9].

As temperature, abundance, etc. are not directly observable
but rather inferred from spectral absorbance lines, the 3D
models are used to predictively match observed spectra to
determine the composition and temperature flows. In particular,
the 3D models produce a variety of spectra that can be directly
compared to observation. The models employed in this paper
produce spectra for the total flux profile, the perpendicular
spatially averaged intensity profile, spatially resolved intensity
profiles, angularly resolved intensity profiles and a continuum
intensity (or flux) associated with each profile. This data
is stored in NetCDF file storage (a universal data storage
format run by Unidata) and hence program routines need to be
developed to extract the data and present it in a useful format.

Currently, the Research School of Astronomy and Astro-
physics (referred hereafter as RSAA) uses the IDL language,
a programming language popular in the field of astronomy
for its vectorised and numerical data analysis. IDL is very
good at astronomical data processing due to it being an
array focused language as well as also having mature and
extensive astronomical libraries such as idlutils. However
student access to IDL is at best difficult and otherwise the
subscription fee is quite substantial which can present problems
during collaborations. Furthermore, as the language was first
constructed in 1977 and is based primarily on FORTRAN and
C, it has some frustrating syntax requirements that can be
difficult to learn and requires extensive knowledge to produce
elegant and efficient code. It is also a rather narrow in its

applications and not suited to generalised programming due to
its focus on numerical analysis only.

There is a movement building throughout the astronomical
community to move to Python as it deals with many of these
problems. Firstly it is open source and hence accessible to the
entire global community which in turns generates an extensive
user base. Python was designed recently with its inception
during 1989 but having major re-releases in 2000 and 2008
and it was designed specifically for scientific use. It is also
designed to take full advantage of its interpretive nature and
is a highly abstracted language which is more intuitive for
the programmer and allows for easier debugging. Hence basic
operations can often be done more easily, more elegantly and
cheaper in Python than in IDL. It also has much more flexibility
in non-numerical aspects of programming like databases, web
page generation, web services, text processing, process control,
etc.[12] The disadvantages of Python mainly stem from the
youth of the language and as a result many processes well
established in IDL are in current construction or not existent
at all in Python. However these problems are being rectified
as the Python community matures.

As a result of the problems with IDL, there is clearly a need
for routines in Python to interpret, compare and display the
results produced by the 3D models. Presented below is some
preliminary Python code which achieves this function.

III. DESIGNING THE INTERFACE

The data in the 3D models is stored in NetCDF format which
is a data storage format that is independent of any software,
it just requires an interface module in the language you are
working with. The Python NetCDF module uses an object
oriented interface as Python is primarily an object oriented
language. To achieve the desired interface for interacting
with the 3D models, the data needed to be extracted and
then manipulated with a set of functions. As the interface
requires multiple actions on different profiles, an object oriented
approach centred around each profile was ideal as it not only
runs cleaner and more simply but also reduces redundancy.
The code that was produced with this in mind the generates
a basic interface module for the 3D models is displayed in
Appendix A. In particular, this module is name profPlot
(hereafter referred to as the module).

The module was constructed with a set of desired outcomes
in mind. In particular, it had to,

• calculate the temporal average of any profile;
• continuum normalise any profile;
• calculate the equivalent width for any profile; and
• plot any combination of these profiles for comparison.

The module was required to do this for every variable in the
data which vary in dimensions and shape. This is ideal for an
object oriented approach.

The module was constructed primarily around the idea of
taking the NetCDF variables and converting them to workable
objects to perform functions on. There are three object classes
defined in the code, a normal variable, a spatial variable
and an angular variable. Normal variables encompass simple
multi dimensional arrays with the dimensions of time steps, g

G. Leckenby et. al. 3

factor values, and finally the intensity profile1. The variable
object include the perpendicular intensity profile, prof_int,
and the flux profile, prof_flux. The angular and spatial
variables, prof_angle and prof_xy respectively, have all
the dimensions of the parent class, ‘variable’, but include
angular and spatial resolution respectively and were hence
implemented as child classes.

Using the functions attributed to each class, options can be
executed such as temporal averaging, continuum normalisations
and equivalent width calculations. Furthermore, the primary
function of the module is to produce comparison plots to
examine the effects of convection (and other elements of the
3D modelling process) on the various profiles. Hence the plot
function is of crucial construction. The plot function takes
in a list of profiles to be plotted and returns a graph of the
comparison. As each variable is an object, the construction of
the plotting list can often be completed by a simple for loop
which provides extensive flexibility. Part of this flexibility is that
other functions outside the module can still be plotted with the
desired profiles2 by simply adding a pylab.plot(xVals,
yVals) call before the profPlot.plot call. The module
also supports alternating the x value that the profiles are plotted
against. For example, another common scale is to use the
Doppler velocity units with respect to the base wavelength.
Any wavelength can be expressed in terms of a reference
wavelength, λ0 and the appropriate Doppler shift by

λ− λ0 =
v

c
λ0.

Hence, a velocity scale can be produced that varies linearly
with respect to wavelength. This use of Doppler notation is
particularly useful when considering line profiles in a moving
medium such as a stellar atmosphere because it allows the direct
translation of physical velocities into the Doppler broadening
presented in the absorption spectra.

The data is presented in large multi dimensional arrays that
include up to five different variables. The intensity profiles
can be selected by inputting the appropriate indexing during
initialisation of the variable. Otherwise, if the indexing is not
included, the module resorts to pre-set defaults. For the time
step, the module automatically take the temporal average, and
for the g factor value, the angles and xy coordinates, the middle
index is selected by default.

The module evidently has limitations to its capabilities and
for a variety of reasons, users may want to access the core
data. To this purpose, each variable object opens the NetCDF
file in read only format. Hence the raw NetCDF dataset can be
accessed through any self.rootgrp call using the NetCDF
module syntax. This allows for descriptions of the shapes
of variables, access to the raw data and attributes of the
NetCDF file. Further information on the Python’s NetCDF
module can be found through the netCDF4 Module manual by
Whitaker[13].

1These concepts will be more thoroughly explored in Section IV.
2An example is seen in Section IV.

IV. CAPABILITIES OF THE INTERFACE

As the module was designed with flexibility in mind, not
all the capabilities of the module will be demonstrated here
but rather the most useful selection. The file used is a solar
spectrum centred on the Fe(I) emission line at 5041.7559
Å(hereafter referred to as FeI-504). This allows for full
demonstrations of not only convective influences but abundance
changes.

One of the requirements was to produce temporal averaging
and continuum normalisation for each profile provided as
these are how spectral lines are conventionally presented in
astrophysics. Both calculations involve basic multi dimensional
array mechanics which is managed in python through numpy.
To demonstrate these capabilities, the flux profile will be used.
The flux of a star is of special distinction in astronomy as
it differs from the intensity which is a common source of
confusion. The intensity represents the physical number of
photons being received by the observer per unit of time. The
flux however is the intensity integrated over any closed surface
enclosing the star (the surface can be any shape, the same
number of photons will pass through). Hence it is the total
amount of light being emitted from the star over its entire
sphere at any one.

Fig. 1: The temporal average and the individual time steps for the
flux profile.

As is evident from Figure 1, the temporal changes are minimal
but still important. The thick dotted line represents the temporal
average. Note that for each profile produced, if a time step is
not specified, the temporal average is taken by default. Note
also that the continuum norm is also calculated practically by
default (there is no function to produce a list of the actual
intensity values, this can only be accessed directly through
NetCDF commands).

The 3D models also provide variation in abundance in terms
of the gf values. Varying the gf values allows a simulation
of variation in the abundance as the equivalent width is
proportional to the abundance by gf . However during the
calculations, the gf term is varied instead of abundance as it
is more convenient (less computationally heavy) to adjust the
gf value then to recompute the quantum effects of abundance
and then combine it with the changes in abundance. The 3D

G. Leckenby et. al. 4

models often produce an output of ±n0.2 of the standard log g
value to provide a variety of abundances to consider (for our
data, n = 1 producing 3 gf values as in Figure 2). Changing
the abundance of an element, especially one with a relatively
low abundance in the stellar composition like Iron (0.3% of
total atoms), drastically changes the strength of the spectral
absorbance line.

Fig. 2: The 3 different gf values for the flux profile.

This is evident in Figure 2 as those with higher gf values,
corresponding to higher abundance, produce stronger absorption
lines. Note that by default the middle gf value is chosen.

The equivalent width is a quantitative measure of the strength
of spectral lines and is a commonly used piece of data to ini-
tially assess the spectra. The equivalent width itself corresponds
to the normalised area of the absorption line which is equivalent
to a rectangle (of normalised height 1) with width equal to the
area of the absorption line. The equivalent width for any given
profile can be calculated using the self.equivWidth()
function included in the module. Computing the equivalent
width for the time averaged flux profile of the solar FeI-504
emission line gives Wα = 1.8812× 10−2 Å, for example.

The 3D models maintain angular resolution of the spectrum
through the variable prof_angle. This takes the intensity
profile at a variety polar (µ) and azimuthal (φ) angles (in
spherical polar coordinates). The profile does not change
drastically throughout the azimuthal distribution. However the
polar angles produce considerable variation. Note that each
angle has it’s own observed continuum level. To provide the
comparison in Figure 3, the intensity profiles were normalised
against the perpendicular continuum.

As is evident from Figure 3, increasing µ values (corre-
sponding to greater angles away from the perpendicular) leads
to a decrease in the intensity. This is intuitive as for any
given section of the solar atmosphere, it is expected that the
intensity will obey a cosine relation over the polar angles
which is demonstrated in Figure 3. That is lots of light will
be emitted perpendicularly and zero will be emitted at perfect
right angles the modelled patch. Note that each profile plotted
in Figure 3 is an average over its respective φ values using
the self.phiAvg() function.

Fig. 3: The distribution of µ intensity profiles.

Furthermore, the 3D models maintain spatial resolution of
the spectrum through the variable prof_xy. This takes the
perpendicular intensity over the modelling surface grid. The
solar data set used for the examples provides a Cartesian
grid of 120 × 120 data points. This spatial resolution shows
how convective flows and atmospheric granulation affect
the produced absorbance lines through thermal Doppler and
microturbulent broadening.

Fig. 4: The distribution of x intensity profiles with y = 60.

Figure 4 demonstrates a xpos cross section of the modelled
atmospheric rectangle with ypos= 60. Note only one in every
three data points was plotted to reduce the cluttering generated
by over plotting 120 profiles. Further note that again, the values
are normalised against the average continuum level and hence
the spread above and below a continuum of 1 is expected. It is
clear from the figure that those profiles with lower continuum
values (lower intensity profiles generated by cooler gas) are
shifted right of the average to longer wavelengths whilst profiles
with higher continuum values (high intensity produced by
hot gas) are shifted left to shorter wavelengths. This is the
result of Doppler shifting by convective flows with large hot
flows of upward moving gas producing a redshift whilst with
smaller downflows of cooler gas produce a blueshift. This

G. Leckenby et. al. 5

clearly demonstrates that convective flows have large effects
on the thermal Doppler broadening of the observed wings of
spectral lines demonstrating the need for 3D models over 1D
approximations.

Fig. 5: The time step distribution at a specific point, (60, 60).

Figure 5 plots all six time steps in the data file for the centre
point of the grid, (60, 60), displaying the shift of the profile over
time. It is clear that the individual profile changes dramatically
in response to convective flows. Profiles are visible over all
ranges of absorbance and intensity ranging from low-low to
high-high and everything in between. This demonstrates how
the 3D model is dynamic in its use of convective flows affect
the intensity and Doppler shift enormously over the time
steps. Furthermore, it demonstrates the dynamic nature of
the abundance which also varies with time producing very
deep and very shallow absorbance lines. Hence, examining the
spatial resolution of the model demonstrates how complex and
realistic it is.

Fig. 6: A sine curve plotted over the intensity and flux profiles.

This covers the majority of the capabilities of the module.
Obviously it is significantly flexible but as it only plots the data
given, there are some inherent limits to its applicability. One
thing to note is that other functions, if specified using numpy
before the profPlot.plot is called, can also be plotted

over the graph. For instance, consider Figure 6 where a simple
sine curve has been plotted against the perpendicular intensity
and the total flux profiles. Note also the subtle differences
between the intensity profile and the flux profile. Both have
every similar equivalent widths however the flux profile is
slightly broader as the global integration takes into account the
rotational broadening (of the whole star). Hence the distinction
between flux and intensity is an important one.

V. REFLECTIONS AND IMPROVEMENTS

With each project completed in Python, further experience
in object oriented programming is gained. In particular, whilst
working on the construction of the module, numerous problems
were encountered that often required complete restructuring of
the module. Some of the issues that still plague the module
are presented below.

Of primary concern is that the module is not fully optimised.
Currently, to calculate a time averaged profile the full multi
dimensional array is averaged. Whilst this is appropriate for
comparing flux and intensity profiles (which correspond to
different variable arrays in the data), when comparing the
full cross section of the spatial profile (as in Figure 4), the
profile is averaged 120 times. As all 120 profiles come from
the same array, this array needs only be averaged once. This
produces considerable computational delay which only affects
a select range of profiles but results in the computation not
being optimised for full generality. This is a result of less than
ideal class structure however to fix the issue would require
completely re-evaluating the class structure and restarting the
debugging process.

Also of minor concern is that currently, the module relies
heavily on the assumption that the data structures of the
NetCDF files will be identical to the provided example
solar data. In particular, NetCDF stores its variables in multi
dimensional arrays. If the dimensions of these arrays change,
then the module becomes useless because all of the in built
slicing of arrays no longer function.

Fig. 7: The distribution of x profiles for a Red Giant.

For example, if a simplified profile was included that no longer
had the nt or ngf dimensions, the module would crash with

G. Leckenby et. al. 6

an index error. Fortunately, the 3D models used at RSAA
always produce data of the same format. Consider Figure 7
which came from a profile file of FeI-504 for a Red Giant
atmosphere with only 1 time step and gf value provided. The
profiles plotted are an xpos cross section (as in Figure 4) with
every fifth element considered. As is evident, the profiles are
considerably stronger (W = 0.1028) than the sun due to the
lower atmospheric temperature in red giants such that the line
opacity increases. However the profiles are also much more
broadened and distorted due to the more complex convection
processes occurring. This example demonstrates the flexibility
of the module given a specific data format.

Due to Python’s extensive user modules, it is not particularly
hard to open and read the data files as efficiently as possible.
In fact most actions required by the module can be coded from
scratch in less than 50 lines. Hence the wider applications of the
module are limited because unlike IDL, not a lot of preparatory
work is needed before the data is accessible in the desired
format. Furthermore the module does not include anything
further than comparative plotting which limits its uses in
quantitative astronomy without further development. However
if regular and repetitive production of the demonstrated plots
is required, the module will significantly increase productivity.

VI. CONCLUSIONS

The primary aim of the presented investigation was to enable
the author to become proficient in the use of Python for
scientific programming purposes. As with any skill, there
are a variety of levels of ’proficiencies’ however given the
work produced in Appendix A and the courses successfully
completed in Appendix B, the author has moved beyond basic
proficiency and now requires projects or advanced computing
courses to expand his skill set. In this sense, the investigation
was a success.

Secondarily, it has been demonstrated that an advanced
interface for the analysis of the results of full three dimensional
hydrodynamical time-dependent simulations of convection can
be implemented successfully using the Python programming
language. Included (Appendix A) is a rudimentary imple-
mentation of such an interface which allows for a variety of
comparative plotting techniques. This includes demonstrations
of all the key features of the 3D models as well as qualitative
analysis of a variety of profiles. Furthermore, external functions
including experimental observations can be over plotted to
provide comparisons and assess the success of the 3D models.

There are extensive improvements to be made to make
the module presented in Appendix A useful in astrophysical
terms. Quantitative analysis methods could be included and
the integration with external plotting of observations could be
improved upon. Furthermore, several optimisations in the class
structure could be implemented to produce a faster and more
efficient module. However basic functionality is implemented
smoothly and demonstrates the ease and elegance of Python
in astronomical applications.

Understanding the processes in the solar atmosphere informs
our understanding of other stars and the formation of the spectra
that reach us. In particular, spectra from observations provide a

huge amount of information of the stellar system and are used to
determine temperatures and other features used to classify stars.
Hence good modelling is required to draw correct conclusions
about the nature of the star. The mixing length and local
thermal equilibrium assumptions provided for the traditional
one dimensional models of stellar atmospheres are currently
being replaced by three dimensional hydrodynamical time-
dependent simulations for vastly improved predictive power.
As with any modelling system, interpretive routines are required
to turn numerical predictions into useful results. This paper
has demonstrated that Python can be used just as effectively
as IDL to produce the required interface with the 3D models,
often more elegantly and efficiently.

REFERENCES

[1] L. Schanne, 2014. Astronomical Optical Spectroscopy; spectra
of stars and other celestial objects. Viewed, 26 May 2015.
http://www.astrospectroscopy.eu/index e.html

[2] P.S. Barklem, H.C. Stempels, C. Allende Prieto, O.P. Kochukhov, N.
Piskunov, and B.J. O’Mara. Detailed analysis of Balmer lines in cool
dwarf stars. Astronomy and Astrophysics, 385:951-967, April 2002.

[3] O. Kochukhov, S. Bagnulo, and P.S. Barklem. Interpretation of the core-
wing anomaly of Balmer line profiles of cool Ap stars. The Astrophysical
Journal, 578:L75-L78, September 2002.

[4] H.G. Ludwig, N.T. Behara, M. Steffan, and P. Bonifacio. Impact of
granulation effects on the use of Balmer lines as temperature indicators.
Astronomy and Astrophysics, 502:L1-L4, June 2009.

[5] M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott. The chemical
composition of the Sun. Annual Review of Astronomy and Astrophysics,
47:481-522, September 2009.

[6] C.R. Cowley and F. Castelli. Some aspects of the calculation of Balmer
lines in the sun and stars. Astronomy and Astrophysics, 387:595-604,
May 2002.

[7] C.R. Vidal, J. Cooper, and E.W. Smith. Hydrogen Stark broadening
calculations with the unified classical path theory. Journal of Quantitative
Spectroscopy and Radiative Transfer, Vol. 10, pp. 1011-1063, January
1970.

[8] Fuhrmann, K., Axer, M., and Gehren, T. Balmer lines in cool dwarf
stars. Astronomy and Astrophysics, 271:451-462, March 1993.

[9] T.M.D. Pereira, M. Asplund, R. Collet, I. Thaler, R. Trampedach, and J.
Leenaarts. How realistic are solar model atmospheres? Astronomy and
Astrophysics, 554:A118, June 2013.

[10] M. Asplund, and K. Lind. The light elements in the light of 3D and
non-LTE effects. IAU Symposium No. 268, February 2010.

[11] Å. Nordlund, and K. Galsgaard. 1995. A 3D MHD Code for Parallel
Computers. Tech. rep., Astronomical Observatory, Copenhagen Univer-
sity.

[12] K. Cruz, 2009. IDL vs. Python. AstroBetter. Viewed 28 May 2015.
http://www.astrobetter.com/blog/2009/05/04/idl-vs-python/

[13] J. Whitaker. 2014. Module netCDF4. Viewed 30 May 2015. http://netcdf4-
python.googlecode.com/svn/trunk/docs/netCDF4-module.html

G. Leckenby et. al. 7

APPENDIX A

Attached below are the Python routines of the interface module. Tabbing is preserved as per Python syntax. The module
explanations and function descriptions are included after the definition of each class and function. However if a full module
description is required, the author can be contacted at guy.leckenby@gmail.com. Note that to use the module below, you will
need the netCDF4 and pylab modules installed.

import netCDF4
import pylab

The following is the Python Routine for reading and constructing spectoscopic
graphs using NetCDF files.

class Variable(object):
’’’
A variable that contains all the information you need to perform the required functions on

it.
’’’
def __init__(self, fileName, name, ts = None, gf = None):

’’’
Initiates variable inheriting from ProfileFile, ie automatically opens file. Sets

instance
variables for use in later calculations.

Inputs: fileName: - string representing the name of the file to be opened.
name - string informing us of the variable of interest.
ts - int representing the time step to be calculated for. Default is None which

assumes the variable is time independent. If this is not the case the initial
time step is chosen as default.

gf - int representing the gf value to be calculated for. Default is the middle
value.

’’’
self.fileName = fileName
try:

self.rootgrp = netCDF4.Dataset(fileName, ’r’)
except RuntimeError:

print ’No such file or directory. Please ensure you include the full path name.’

self.name = name
self.ts = ts
self.gf = gf

assert ts < self.rootgrp.variables[name].shape[0], ts + " is not a valid index."

if gf is None:
self.gf = self.rootgrp.variables[name].shape[1]/2

def timeAvg(self, var=None):
’’’
Calculates the temporal average for the provided varaible and returns an ndarray.

Inputs: var - a string representing the variable you want to time average for.
Default is to use the instance variable.

Outputs: An ndarray which is simply the average of the old array.
’’’
if var is None:

return pylab.average(self.rootgrp.variables[self.name],0)
else:

return pylab.average(self.rootgrp.variables[var],0)

def contNorm(self, contVar=None):
’’’
Normalises the variable against a chosen continuum.

Inputs: contVar - a string that is the name of the variable whose continuum you
wish to normalise against. Default is variable’s own continuum.

Outputs: a list containing the normalised values.
’’’
if contVar is None:

G. Leckenby et. al. 8

contVar = self.name+’_cont’
if self.ts is None:

cont = self.timeAvg(contVar)
norm = self.timeAvg(self.name)[self.gf]/cont

else:
cont = self.rootgrp.variables[contVar][self.ts]
norm = self.rootgrp.variables[self.name][self.ts,self.gf]/cont

return norm

def equivWidth(self, xVals=None):
’’’
Uses contNorm to calculate the equivalent wavelength for the variable.

Inputs: attr - the name of the attribute to be used as x values.
Outputs: a float that is the equivalent width.

’’’
if xVals is None:

xVals = getattr(self.rootgrp, ’wavelength’)
norm = self.contNorm()
intNorm = pylab.trapz(norm, x=xVals)
intCont = xVals[-1]-xVals[0]
return intCont - intNorm

def __str__(self):
’’’
Directs name of variable to be a string specifiying name of variable and the selected
indexing values.
’’’
return self.name+’ (ts=’+str(self.ts)+’, gf=’+str(self.gf)+’)’

class SpatialVariable(Variable):
def __init__(self, fileName, name, ts = None, gf = None, xpos = None, ypos = None):

’’’
Initialises the variable this time keeping spatial information.
’’’
super(SpatialVariable, self).__init__(fileName, name, ts, gf)
self.xpos = xpos
self.ypos = ypos

if xpos is None:
self.xpos = self.rootgrp.variables[self.name].shape[4]/2

if ypos is None:
self.ypos = self.rootgrp.variables[self.name].shape[3]/2

else:
assert xpos < self.rootgrp.variables[name].shape[4], xpos + " is not a valid x index."
assert ypos < self.rootgrp.variables[name].shape[3], ypos + " is not a valid y index."

def contNorm(self, contVar=None):
’’’
Effectively the same as contNorm for a Variable but calculates for the supplied

positions.

Inputs: contVar - a string that is the name of the variable whose continuum you
wish to normalise against. Default is variable’s own continuum.

Outputs: a list containing the normalised values.
’’’
if contVar is None:

contVar = self.name+’_cont’
if self.ts is None and ’xy’ in contVar:

cont = self.timeAvg(var=contVar)[self.ypos,self.xpos]
norm = self.timeAvg()[self.gf,:,self.ypos,self.xpos]/cont

elif self.ts is None and ’xy’ not in contVar:
cont = self.timeAvg(var=contVar)
norm = self.timeAvg()[self.gf,:,self.ypos,self.xpos]/cont

elif ’xy’ in contVar:

G. Leckenby et. al. 9

cont = self.rootgrp.variables[contVar][self.ts,self.ypos,self.xpos]
norm = self.rootgrp.variables[self.name][self.ts,self.gf,:,self.ypos,self.xpos]/cont

else:
cont = self.rootgrp.variables[contVar][self.ts]
norm = self.rootgrp.variables[self.name][self.ts,self.gf,:,self.ypos,self.xpos]/cont

return norm

def __str__(self):
’’’
Directs name of variable to be a string specifiying name of variable and the selected
indexing values.
’’’
return self.name+’ (ts=’+str(self.ts)+’, gf=’+str(self.gf)+’, x =’+str(self.xpos)+’,

y=’+str(self.ypos)+’)’

class AngularVariable(Variable):
def __init__(self, fileName, name, ts = None, gf = None, mu = None, phi = None):

’’’
Initialises the variable this time keeping angular information.
’’’
super(AngularVariable, self).__init__(fileName, name, ts, gf)

if gf is None:
self.gf = self.rootgrp.variables[name].shape[3]/2

self.mu = mu
self.phi = phi

if mu is None:
self.mu = self.rootgrp.variables[self.name].shape[1]/2

if phi is None:
self.phi = self.rootgrp.variables[self.name].shape[2]/2

else:
assert mu < self.rootgrp.variables[name].shape[1], mu + " is not a valid mu index."
assert phi < self.rootgrp.variables[name].shape[2], phi + " is not a valid phi index."

def contNorm(self, contVar=None, phiAvg=False):
’’’
Effectively the same as contNorm for a Variable but calculates for the supplied angles.

Inputs: contVar - a string that is the name of the variable whose continuum you
wish to normalise against. Default is variable’s own continuum.

Outputs: a list containing the normalised values.
’’’
if contVar is None:

contVar = self.name+’_cont’
if self.ts is None and ’angle’ in contVar:

cont = self.timeAvg(var=contVar)[self.mu, self.phi]
norm = self.timeAvg()[self.mu,self.phi,self.gf]/cont
phi = self.timeAvg()[self.mu,:,self.gf]/cont

elif self.ts is None and ’angle’ not in contVar:
cont = self.timeAvg(var=contVar)
norm = self.timeAvg()[self.mu,self.phi,self.gf]/cont
phi = self.timeAvg()[self.mu,:,self.gf]/cont

elif ’angle’ in contVar:
cont = self.rootgrp.variables[contVar][self.ts,self.mu,self.phi]
norm = self.rootgrp.variables[self.name][self.ts,self.mu,self.phi,self.gf]/cont
phi = self.rootgrp.variables[self.name][self.ts,self.mu,:,self.gf]/cont

else:
cont = self.rootgrp.variables[contVar][self.ts]
norm = self.rootgrp.variables[self.name][self.ts,self.mu,self.phi,self.gf]/cont
phi = self.rootgrp.variables[self.name][self.ts,self.mu,:,self.gf]/cont

if phiAvg is True:
return phi

else:
return norm

G. Leckenby et. al. 10

def phiAvg(self, cont=True, contVar=None):
’’’
This function averages over all the phi values for the given mu value.

Output: a list containing the phi averaged values.
’’’
if cont is True:

contNorm = self.contNorm(contVar=contVar, phiAvg=True)
avg = pylab.average(contNorm, 0)
return avg

else:
index = self.rootgrp.variables[self.name].dimensions.index(u’nphi’)
return pylab.average(self.rootgrp.variables[self.name], index)

def __str__(self):
’’’
Directs name of variable to be a string specifiying name of variable and the selected
indexing values.
’’’
return self.name+’ (ts=’+str(self.ts)+’, gf=’+str(self.gf)+’, mu =’+str(self.mu)+’,

phi=’+str(self.phi)+’)’

def plot(variable, xVals, lgnd = None, xlabel = None, ylabel = None, title = None):
’’’
Plots a given variable against a given attribute without normalising the variable.

Inputs: variable - list of Variables or lists of values to be plotted.
xVals - a list containing the x values to be plotted against.
lgnd - list of strings to be used as labels. Default is no labels.
title, xlabel, ylabel - string repsenting aforementioned. Default is no labels.

Outputs: A graph plotting the variable against the attribute.
’’’
if lgnd is None:

for a in variable:
pylab.plot(xVals, a)

else:
for a,b in enumerate(variable):

pylab.plot(xVals, b, label = lgnd[a])
if xlabel != None:

pylab.xlabel(xlabel)
if ylabel != None:

pylab.ylabel(ylabel)
if title != None:

pylab.title(title)
pylab.legend(loc = ’best’)
pylab.show()

G. Leckenby et. al. 11

APPENDIX B

The author at the beginning of this investigation had no knowledge of any programming language. Since then, he has
become proficient in the use of Python and the understanding of fundamental programming concepts if not the higher algorithm
structuring. As proof of this, included are the certificates gained from completing two online courses through the platform edX.
The respective grades in each course were 96% and 91%.

