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1 Introduction

This project is primarily designed to analyse chaotic systems and gather an appropriate under-
standing of the importance of chaotic motions to physics. As a result it is essential to understand
the terminology used when discussing dynamical systems. According to Ott (2002, p. 6), one
way to define a dynamical system is “a deterministic mathematical prescription for evolving
the state of a system in time.” This system will evolve in a phase space of N dimensions that
characterises the system. The path through phase as the system is evolved is referred to as the
orbit or trajectory of the system for a given set of initial conditions.

The most common dynamical systems studied at an undergraduate level are mostly in the linear
regime and hence the analytic solutions produced, if bounded in finite phase space, will settle
down to one of two generic behaviours; a steady state solution where the system ceases motion
or a regular oscillation that is either periodic or quasiperiodic (Alligood et al. 1996, p. vi).
However around 1975, scientists became interested in a further regime of dynamics, now called
chaos, where erratic motion is observed that is not simply quasiperiodic or due to a large number
of particles but is rather a rich behaviour in and of itself.

This new chaotic behaviour will be examined through the motions of the Duffing Oscillator
which is particularly powerful due to its similarity with the standard linear damped driven
oscillator. Thus there are many parallels and limiting cases which are familiar to the reader and
allow for a more natural demonstration of the features of chaos. The Duffing Oscillator itself is
not simply an equation that demonstrates chaos but is a powerful model that can be applied in
many disciplines with diverse applications in neurology (Srebro, 1995) and economics (Kulkarni,
2012). With this in mind, it is essential to understand it’s behaviours and characteristics and
draw some useful predictions from the model.
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2 The Duffing Oscillator

Fundamentally, the duffing oscillator is a nonlinear second-order ordinary differential equation
given by (2.1) and produced from a symmetric quartic potential.

i+ 2vi + az + Bz® = F cos(wt) (2.1)

In terms of the parameters, the natural form has five;

~ controls the size of the damping of the oscillator,

« controls the stiffness which is resistance to elastic deformation,
[ controls the nonlinearity in the restoring force,

F' controls the amplitude of the driving,

and w controls the frequency of the driving.

The Duffing Oscillator has a nonlinear but symmetric restoring force give by Fr = —axz —
B3, Unlike the standard Simple Harmonic Oscillator, the nonlinearity in the Duffing Oscillator
produces a quartic potential well,

1 1

Ulz) = ax? + = pa?, (2.2)
2 4

pictured in Figure 2.1, that produces more complex motions. Note that it is required that o < 0

and 8 > 0 otherwise the potential is either negative which is not a restorative force or lacks the

double well form which generates the complex motions.
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Figure 2.1: The potential of the Duffing Oscillator with a = —1, g = 0.8.

Fundamentally, the Duffing Oscillator is the action of a point particle under a double well poten-
tial however it models many realistic systems well. Apart from the more complex neurological
and economic applications mentioned above, a simpler driven torsional inverted pendulum is a
good physical grounding studied in the Second Year Lab program at ANU (Corr, 2015) repre-
sented in Figure 2.2. The equation of motion of such a pendulum is

mi?0 = mgsin 6 — klO — 610 + Fy cos wt (2.3)

where m is the mass of the weight, [ is the length of the pendulum, ¢ is the damping coefficient, k
is the spring coefficient, Fp is the driving force amplitude and w is the frequency of the driving. As
the pendulum oscillates to angles that violate the small angle approximation, the next non-zero
term in the McLaurin series must be included thus giving an approximation sin 6 =~ 6 — %93. After
algebraic manipulation, this produces the Duffing Equation (also implying, since m,g,l,k > 0,
that & > 0 and § < 0).
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Figure 2.2: Inverted driven torsional pendulum (Berger & Nunes, 1997).

2.1 Dimensional Analysis

Whilst (2.1) is the most physically intuitive way of expressing the Duffing equation, it is not the
simplest. In particular dimensional analysis can be used to simplify the number of parameters to
five. This is done using the Buckingham-7 theorem (MIT, 2013) which says that if an expression
f(q1,...,qn) = 0 contains n physically meaningful parameters with k& fundamental dimensions,
it can be simplified to an expression ¢(II,...,II;) = 0 in terms of j = n — k dimensionless
parameters called ‘Pi groups’.

The Duffing Oscillator given in (2.1) has seven physical parameters,
x, vy, a, B, F, w, andt.

Given that & is a linear acceleration with units of m s~2, it follows that each term in (2.1) must
have these same units. Thus by deduction, it follows that these parameters respectively have
the units

Tr:m, y: sil, a 372, B m*23*2, F: ms*Z, w: 371, and t: s.
Thus there are only two fundamental dimensions, m, s. Hence there exists a simplified expression
for the Duffing equation with only five Pi groups.

Furthermore the Pi groups are known to be dimensionless by the Buckingham-7 theorem. Any
five Pi groups that include all the parameters will work. By inspection and using the methods
suggested by MIT (n.d.), the following pi groups (with slightly more manageable names) were
found;

w3

Ma Iy =7 =wt, H3=a=1, Iy =5 and II5 = G =
w w

o

H = — = 77
1=Y w2
Note that each of the Pi groups is dimensionless and that every parameter has been included.

Substituting in y and 7 first and noting that

dr _dedr _widy  diz_d (o?dy)dr Wt dy

dt drdt /Bdr dt2  dr \/Bdr) dt  /Bdr?’

equation (2.1) transforms to
3

w™ .
Vil

2%‘)2'+ VS S F cos
J+—=y+ =y = T
VB VBT VB
2 F
Q—l—ly'—i-jy—i-yg: \QBCOST
w w

[0
w
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4 2ay + by + 3> = GeosT

where the terms g and §j are with respect to 7. Thus it follows that this is the desired expression
¢(I1y, ..., II5) = 0 and that ¢ is equivalent to the Duffing Oscillator (2.1) by the Buckingham-
theorem.

Note that using the Buckingham-7 theorem via inspection requires some foresight in terms of the
most convenient expression. In this case, the choices were motivated by Zhao’s (2014) choices
for simplification. Furthermore note that from this point forward, when the Duffing Oscillator
is referred to, the form of equation (2.4),

i+ ai + bx 4 2® = F cost, (2.4)

will be used knowing that it is equivalent to (2.1) (the factor of 2 has been absorbed into a for
conciseness). Further note that because of the requirement that o < 0 it is required that b < 0.

2.2 Limiting Cases

It is insightful to investigate the limiting cases of any system to ensure it collapses to a logical
point. In this case, it is interesting to investigate the behaviour of the parameters under the
limits a,b, F — 0 (the infinite limit is less interesting). Revising what each parameter controls
physically under the simplification, a now controls the strength of the damping, b determines to
nonlinearity of the restorative force and F' determines the amplitude of the driving. Note that
not all limit combinations will be considered, only those that demonstrate simple behaviour.

Suppose a, F' — 0. Then there is no damping and the Duffing Oscillator becomes a simple
nonlinear oscillator. Thus a nonlinear trajectory is expected due to the quartic potential
well seen in Figure 2.1. As visible in Figure 2.3(a), the phase space diagram for this setup, the
pendulum increases velocity and position as it falls into the potential well, inverts velocity as
it reaches the peak of the swing, then accelerates again over the centre of the potential. The
nonlinearity of the quadratic potential produces the ‘pinched in’ velocity of the trajectory as
the particle travels over the peak in the centre of the potential. This can be attributed to the
nonlinearity as by setting b — 0 in Figure 2.3(a), no ‘pinching’ occurs.

Velocity
o

a-0
2N | b0 1 N 7 | - a-04 ]
L L L L 1 1 1 . 1
-2 -1 0 1 2 -2 -1 0 1 2
Position Position
(a) Simple nonlinear oscillator. (b) Damped nonlinear oscillator.

Figure 2.3: Phase space profiles for various limits of the Duffing Oscillator.
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If a is reintroduced such that only F' — 0, then the Duffing Oscillator collapses to a damped
nonlinear oscillator. With the damping term introduced, the particle loses energy until it no
longer can oscillate between potential wells. The long term behaviour involves decaying to a
stable fixed point in whatever well it has been trapped. This is seen in Figure 2.3(b) where for
positive a, the solution decays to the fixed point.

The fixed points of the nonlinear potential have an important impact on the limiting cases. In
particular setting the potential U(x) = %be—i— %x‘l = 0, three fixed points are found, z = 0, +v/b.
z = 0 is unstable whilst 2 = ++/b are stable. Thus in the damped case, it is expected that the
long term behaviour of the system will be to settle at either z = ++v/b. If the system is undamped
also, the trajectory in phase space, which has constant energy, will encompass one or both of

the stable fixed point, depending on the initial energy.

2.3 Frequency Profile and Hysteresis

As the Duffing Oscillator is a driven oscillator, it naturally has a frequency response curve
however due to the nonlinear nature of the oscillator, it behaves quite differently from the tradi-
tional frequency response. The following results are discussed here because they are generated
primarily from the nonlinearity of the Duffing Oscillator rather than the chaotic motions directly.

The frequency response of a driven oscillator is the response of the amplitude of oscillation with
respect to the driving frequency. In particular the system is expected to exhibit a resonance
frequency wy where the amplitude is maximised with the response falling off as the frequency
gets further away. The Duffing Oscillator behaves slightly differently. To analyse the frequency
response of the oscillator, it is studied under the assumption that the steady state response of
the system is sinusoidal and given by

z(t) = A(w) cos(wt — 0). (2.5)

To obtain the frequency response, (2.5) is substituted into (2.1) and then the coefficients of the
orthogonal functions sine and cosine are equated upon which the expressions are squared and
added to produce (2.6) (Das, 2002),

3 .72
A2 [(1 — )+ A+ (27Aw) = F2. (2.6)
(2.6) is biquadratic in w and can be solved analytically for A as a function of w if negative

solutions are discarded as nonphysical. This produces three individual solutions, given numerical
v and F values are provided, which can be seen in Figure 2.4. The three solutions connect

5

Amplitude (m)

Frequency (Hz)

Figure 2.4: Frequency response curve for the Duffing Oscillator with v = 0.1, F = 4.
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continuously to produce the black curve, the middle solution is dashed to separate the three,
however they are all independent solutions. The grey solution represents the free oscillations and
its departure from vertical measures the anisochronism or nonlinearity of the oscillator (Sconza
& Torzo, 2002). As evident, the response peak bends to the right, deviating from the vertical
peak expected in linear oscillations.

This deviation produces the interesting result that (in the example case) with 2.3 < w < 4.2
the amplitude has three possible roots. What happens physically is that if the frequency is low
and increased, the amplitude follows the upper solution curve until the maximum value (4.2 in
Figure 2.4) is reached and then it drops and continues on the lower curve. If the frequency is
high and reduced, then the amplitude follows the lower curve until the turning point is reached
(2.3 in Figure 2.4) where it jumps to the upper curve and continues. The dashed middle curve
thus cannot be observed experimentally but remains a solution. This phenomena is known as
amplitude jumps in forced nonlinear oscillations (Sconza & Torzo, 2002).

Amplitude jumping is an example of a hysteretic behaviour. Hysteresis is broadly the depen-
dence of a system on its history, that is to determine its current state, its history must be known
(Sethna, 1994). Is this situation, whether the frequency was increased or decreased to get to the
current driving frequency must be known to determine which amplitude the oscillator exhibits.

Thus the hysteretic behaviour of the Duffing Oscillator yet again demonstrates its nonlinearity
and how it can demonstrate exotic behaviours.

2.4 Formulation as a Discrete Mapping

A dynamical system that evolves with time can either have a continuous or discrete formulation.
A continuous time system is referred to a flow and is typically represented by a differential
equation whilst discrete time involves a mapping that evolves the system as a countable sequence.
So far the Duffing Oscillator has been introduced in continuous time however many chaotic
phenomena are much simpler to introduce and explore in terms of a discrete mapping. Hence it
is useful to construct a discrete time mapping from our differential equation.

There are two different formulations of converting a flow to a discrete system, the Poincaré
surface of a section method or the time-T sampling method (Ott, 2002). The time-T
method is the simplest and simply involves sampling the flow at discrete times t,, = to + n1" for
some 7' chosen for convenience. Thus a flow z(t) yields a discrete orbit z,, = x(¢,,). The quantity
ZTn+1 is uniquely determined by x, as x,, is simply used as initial conditions and then integrated
to a time 7. Thus the time-T map is invertible as it is one-to-one and onto throughout the
phase space.

The Poincaré map is slightly more complicated but much more elegant. Poincaré realised that
many behaviours of a system could be determined by considering a subspace of the phase space,
most commonly a plane, by tracking the intersections of the orbit with this subspace. Consider
the plane S in Figure 2.5 which is termed the surface of a section. Let A represent the k"
rightward piercing of the plane and C' be the k + 1'* right piercing. Then the Poincaré map
is the map P(A) = C. That is 1 = C is uniquely determined by z = A by following the
solution from A until it again pierces the plane from the right at C' (Alligood et al., 1996).

The difference between the Poincaré map and the time-T map is that the time-T map is strobo-
scopic (meaning that the values are collected at equal time intervals) whilst the Poincaré map
depends on when the solution pierces the surface of a section. Furthermore the Poincaré map
reduces the dimension of a dynamical system from k in continuous form to k£ — 1 in discrete form
whilst the time-T map retains the dimensionality k.

Turning to the model of the Duffing Oscillator presented in (2.4), the formulation presents a
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Figure 2.5: A Poincaré map derived from a continuous time solution.

continuous time solution by solving the second order nonlinear ordinary differential equation.
This can be transformed into a system of first order linear autonomous ODE’s presented in (2.7)
using the substitutions x; = &, x2 = x and x3 = t.

&1 = Fcosxg — bxg — :L‘g’ — axy
l"g =T (27)
T3 = 1.

Then since z3 = t can be treated as an angle in phase space, x3 is equivalent to T3 = x3
mod 27. Choosing the surface of a section to be T3 = 0, the surface of a section is crossed
at time t = 0, 27, 47, ... which is particularly interesting as it is also stroboscopic. Thus the
Poincaré map chosen for the Duffing Oscillator is equivalent to the time-27 map.

This equivalence of the Poincaré map and the time-2m map for the Duffing Oscillator has deeper
implications that will be explored in the next section. However for the current purpose, it suffices
to say that when the discrete mapping of the Duffing Oscillator is mentioned, the time-27 map
is being referred to; constructed by numerically solving the ODE’s for 27 time steps.
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3 Fixed and Homoclinic Points

The Duffing Oscillator exhibits a wide variety of behaviours that can be nonchaotic, transitory,
and chaotic. It is a property of nonchaotic systems that as time evolves, they will approach a
steady state, whether this be a stable point or a stable oscillation. Hence it is interesting to
investigate whether the Duffing Oscillator exhibits the same behaviours.

First however, the concept of a fized state needs to be defined. A fixed state is one where the
system does not change with evolution in time. These fixed states can either manifest as a
zero (point) or one (curve) dimensional manifold in the two dimensional projection phase space.
Projection phase space will be used regularly because it is easier to visualise. However note
that whilst solutions may cross in projection phase space, they don’t cross in true phase space
because of the third dimension of time. A point implies the particle is at rest whilst a curve
implies a periodic oscillation.

3.1 Stability of Fixed Points

Stability of fixed states is significant because small perturbations in reality mean that the be-
haviour near a fixed state needs to be examined. In particular, solutions will either fall away
from or towards a fixed state depending the stability of the neighbourhood. An e-neighbourhood
is defined below.

Definition 3.1 Let x and p exist in phase space R™. Then the e-neighbourhood is the set
No(p) = {x € B" : [x —p| < &},

For this section, it is more intuitive to consider the solutions in the time-27 map because fixed
states including periodic oscillations will be represented by a single point and neighbourhoods
can be visualised by circles rather than complex torus’s.

With this in mind, fixed states can be classified depending on how the e-neighbourhood behaves
under mapping. If an e-neighbourhood of a fixed point collapses under mapping, then the fixed
point is called a source. If the e-neighbourhood expands, then it is a sink. Finally if the e-
neighbourhood does a combination of both, it is a saddle (Alligood et al., 1996, p. 9). Sinks are
called stable because points near them will be stabilised by the sink. For sources and saddles
however, points are mapped away from the fixed point and thus are called unstable. These
definitions are exhibited in Figure 3.1.

> A 7
W NN //

(a) (b) (c)

Figure 3.1: Local dynamics near a fixed point (Alligood et al., 1996, p. 59).

To find a numerical method for determining the stability of fixed points requires the Jacobian
matrix which is an analogue of the derivative in multidimensional space.
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Definition 3.2 Iff is a map on R™ and p € R”, then the Jacobian matriz of f at p, denoted
by Df(p) is

ox1 Oxn
Df(p) = | : o
ox1 Oxp

Given this, linear stability analysis provides a method for determining the stability of fixed
points (Weisstein, n.d.).

Theorem 3.1 Let f be a map on R™ and let p be a fized point of £. Then

1. If the real component of each eigenvalue of Df(p) is negative, then p is a sink.

2. If the real component of each eigenvalue of Df(p) is positive, then p is a source.

3. If the real component of at least one eigenvalue of Df(p) is negative and another positive,
then p s a saddle.

As seen in (2.7), the duffing oscillator forms a three dimensional autonomous system. This
system has the following Jacobian matrix (Kanamaru, 2008).

0 1 0
Df(x) = [ —b—32® —a Fsint (3.1)
0 0 1

From the potential well, the fixed points are known to be x = (0,0), (v/b,0) in phase space
(time is excluded). The eigenvalues of (3.1) are

0,0) : Azl,%(—ai\/a2—4b), (+v0,0) : Azl,%(—ai a2—4b—12b2).

Each fixed point has an eigenvalue 1 associated with the redundancy of the time substitution. It
is evident that the stability of the fixed points depends on the parameters chosen. However for
most parameters that are considered in this report, indeed the ones that produce the interesting
behaviour, (0,0) corresponds to an unstable saddle and (£+v/b,0) are both sinks. This is seen
if the parameters (a — 0.5,b — —1) into the eigenvalues. Then for (0,0) : A = 1,—1.28,0.78
which is classified as a saddle and (£v/b,0) : A = 1,-0.25 — 1.394, —0.25 + 1.39i which are
classified as sinks.

A reminder that when ‘fixed points’ are mentioned, they are points only under the time-27 map
and actually represent fixed solution curves which pass through the same point every 27 (the
fact that not all fixed solutions have period 27 is addressed in Section 4.1).

3.2 Stable and Unstable Manifolds

Sinks and sources are fairly straightforward in terms of the behaviour near them; they attract
and repel respectively. In terms of sets, sources repel all points however sinks may attract only
a subset. This subset of phase space that is eventually attracted to the sink is called its basin of
attraction and represents the set of points that will have settled at the sink in the infinite time
limit.

Saddles are different and more interesting because they attract some points but repel others.
This is formalised in the concept of a stable and unstable manifold (Alligood et al., 1996, p. 78).

Definition 3.3 Let f be a diffeomorphism (smooth, invertible) and p be a saddle point. Then
the stable manifold denoted S(p) and the unstable manifold denoted by U(p) are given by

S(p) = {x: lim [f"(x) ~£"(p)| =0} U(p) = {x: lim |f"(x) ~ £ "(p)] = 0}.
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Note that all points near a saddle except the stable manifold will diverge however not every
other point constitutes the unstable manifold. Most points are simply deflected.

The stable and unstable manifolds are important because they inform the stable manifold
theorem which will be used to draw conclusions about chaos. In particular, one formulation is
presented by Alligood et al. (1996, p. 403) below.

Theorem 3.2 (Stable Manifold Theorem.) Let f be a diffeomorphism of R? and assume that f
has a saddle p such that Df(p) has one eigenvalue with Re(A1) < 0 and the other Re(A2) > 0
with eigenvectors vi and ve respectively. Then both the stable manifold S and the unstable
manifold U of p are one-dimensional manifolds (curves) that contain p. Furthermore vy is
tangent to S and va is tangent to U.

3.3 Homoclinic Points

Generally, the stable and unstable manifolds of a saddle point will not intersect and many early
dynamicists assumed that they could never cross. It is true that the (un)stable manifold cannot
cross itself or any other (un)stable manifold but there are no restrictions on the stable and
unstable manifolds intersecting (Alligood et al, 1996, p. 85), in fact, these define homoclinic
points.

Definition 3.4 Iff is an invertible map on R™ and p is a saddle point, then a point x in both
the stable and unstable manifold of p is called a homoclinic point.

The implications of homoclinic points are extremely complex and only a brief glimpse will be
presented here. If further investigation is required, then Lenci and Rega (2011, p. 219-76) present
an exhaustive investigation into the effects of homoclinic points of the Duffing Oscillator. What
can be said is that if there exists a single homoclinic point, then there must be infinitely many
and there existence implies chaotic orbits (Alligood et al., 1996, p. 413). This is a result of
the Smale-Birkhoff theorem which implies that fractal basin boundaries, sensitivity to initial
conditions, chaotic transience, and the presence of chaotic saddles (Lenci & Rega, 2011, p. 256)
all occur due to the existence of a homoclinic intersection.

Calculation of the stable and unstable manifolds cannot be done analytically for the Duffing
Oscillator so computational approximations are used instead. Unfortunately, these algorithms

(a)
Figure 3.2: Stable and unstable manifolds for the time-27 map (Alligood et al., 1996, p. 59).
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are quite in depth and beyond the scope of this project however Mancho et al. (2003) investigate
such methodology. Instead, Alligood et al. (1996, p. 413) provides a calculation of these
manifolds for a — 0.1,b - —1 and F — 0.3 in Figure 3.2(b). As evident there are many
homoclinic points and the stable manifold somewhat resembles the associated chaotic attractor.
Note that in the unforced case, the stable manifold forms the basin boundary whilst the unstable
manifold decays into the sinks as seen in Figure 3.2(a).
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4 Bifurcations and Cascades

The fixed points investigated in Section 3.1 were the fixed points of the potential, that is the
unforced Duffing Oscillator. When the forcing parameter is increased, the fixed points evolve
from steady state points into oscillatory motion in continuous phase space. These motions are
called limit cycles for when the forcing is low enough and the system is not exhibiting chaos,
all orbits approach the limit cycle under infinite time.

These limit cycles have a period of 27 as the motion has synchronised with the period of the
forcing. Hence under the time-27 map, each limit cycle can be characterised by a single point
as the limit cycle returns to the same coordinates every 2w. These limit cycles are the new sinks
because each orbit tends to them including the origin. Whilst the basins of attraction begin
to be incurred upon with increasing F', under small forcing they still largely resemble Figure
3.2(a) and thus which basin the orbit originated from determines which of the two limit cycles
the system will stabilise at, the positive or negative well.

4.1 Periodic Orbits

Whilst the limit cycles synchronise with the forcing period, there’s nothing to prevent limit
cycles existing with higher periods of integer multiples of 27. These would be orbits that return
to the same point in the Poincaré section every k iterations for example. Formally, a periodic
point of period k is a fixed point under k iterations of the map f such that f*(p) = p. For the
Duffing Oscillator under the time-27 map, this means that the orbit returns to the same point
in projected phase space every 2k7 intervals of time.

These periodic orbits are seen in the Duffing Oscillator as the forcing amplitude is varied. For
low forcing amplitude, a single limit cycle exists and the orbit has period 1. For higher forcing
amplitudes, two or four or even more limit cycles appear in the projected phase space indicating
higher period orbits. These limit cycles are seen in Figure 4.1 which shows a period 1, 2 and 4
orbit. As evident in Figure 4.1(d), the Poincaré section shows the various orbits piercing in k
different places before repeating.

4.2 Bifurcations

In the above analysis of periodic orbits of the Duffing Oscillator, the forcing amplitude F' was
changed to produce higher periodic orbits. When F' is increased, periodic orbits become unstable
and higher periodic orbits replace them in a process called bifurcation. Consider the following
definition (Alligood et al., 1996, p. 448).

Definition 4.1 A one-parameter family of maps on R" is a set of maps £,(x), one for each
value of a belonging to an interval I of real numbers. Then R™ is called the state space and [
is the parameter space.

There are two generic types of bifurcations (others include transcritical, pitchfork and Hopf
bifurcations) called saddle-node bifurcations and period doubling bifurcations. Saddle-node bi-
furcations describe the transition where a system with no stable states gains two stable states,
an unstable saddle and a sink, by varying a. Since the Duffing Oscillator already has at least
two stable states (starting at (x,v) = (£v/b,0)) for small values of F, saddle-node bifurcation
does not occur. Hence period doubling bifurcation is much more interesting.

Period doubling bifurcation occurs when a presently stable orbit transitions to unstable, for
example a sink turns into a saddle. As a result two new stable orbits are born and the period
of the orbit doubles. A period doubling bifurcation on a period k orbit results in a period 2k
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Figure 4.1: Multiple period orbits of the Duffing oscillator. Subfigures (a) - (¢) show the limit
cycles, (d) shows their Poincaré section demonstrating the multiple periods.

orbit such that all period doubling occurs at the same parameter value. The exact reason for
the period doubling involves an eigenvalue of the Jacobian crossing —1 at a nonzero rate. In
Figure 4.2, a saddle-node bifurcation occurs at A whilst a period doubling bifurcation occurs at
B. Note that the fixed point still continues after the period doubling, just that it changes from

stable to unstable.

Figure 4.2: Saddle-node and period doubling bifurcations. Stable orbits are solid, unstable

are dashed.
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4.3 Cascades

Cascades of period doubling bifurcations have been seen in the great majority of low-dimensional
systems that exhibit chaotic behaviour (Alligood et al., 1996, p. 499) and the Duffing Oscillator
is no exception. This is where a stable orbit undergoes an infinite series of period doubling and is
otherwise known as the period doubling route to chaos. The cascade for Duffing Oscillator with
the forcing amplitude as the parameter is given in Figure 4.3. As evident, you can see clearly
the first three bifurcations before they are lost in the resolution. However Figure 4.3(b) shows

06

Position x(t)

041

0.0

-02F L L
0.33 0.34 0.35 0.36 0.37 0.38

Forcing Amplitude (F)

(a) The full cascade.

0.30F ]

0.28

0.26

0.24

Position x(t)
Position x(t)

0.22

0.20

0.18

016l . . . . . :
0.354 0.355 0.356 0.357 0.358 0.359 0.360

Forcing Amplitude (F)

L L L L

L
0.372 0.373 0.374 0.375 0.376

Forcing Amplitude (F)

(b) A magnification of the lower second bifurcation.(c) A period window appearing later in the cascade.

Figure 4.3: Cascade of the Duffing Oscillator via the projected Poincaré section of position for
a— 0.5,b— —1.
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a magnification of the lower second bifurcation and the image looks markedly similar to Figure
4.3(a) such that we could say the cascade appears fractal which will be discussed in Section 5.4.

The cascade eventually approaches an infinite period in finite F' and at this point, the attractors
are no longer periodic with period k but rather dense (uncountably infinite) and are thus chaotic
attractors. Due to the complex nature of the cascade, with very small changes in the family
parameter, the attractor can discontinuously change in size. This is what is seen in periodic
windows like in Figure 4.3(c) where an apparently infinite chaotic attractor collapses back to a
period k orbit. This can be seen as the bifurcations of the fllji one-parameter family map and
thus they then proceed to bifurcate again to infinity.

As the periodicity increases with the cascade,the limit cycles look more chaotic. In Figure 4.4
a variety of limit cycles can be seen throughout the cascade. In Figure 4.4(a), the limit cycle is
still bound to the right well and is simply a very high k period orbit. In Figure 4.4(b), the limit
cycle is of a periodic window and hence has collapsed back into a low period k orbit. Figures
4.4(c) & (d) are simply the projected phase space diagrams of chaotic orbits. The orbit has
escaped one well and now oscillates between both. These orbits have infinite period and appear
to be chaotic motion.

0.8 08F ' -
0.6 06
0.4 04}
_ 02 _ o2
3 00 g 00
e o2 w
-04 -04F}F
-06 -06f
00 05 10 15 0.0 05 10 15
Position Position
(a) Large k period orbit, F' = 0.37. (b) Limit cycle of a periodic window, F' = 0.374.
}// s ;\f\\\ 1.0t .
V1 a\ 7~ g
> ™ \ \r W N // //"\\\\\ \ > | ﬂ & ,‘ W
5 o0 m\}w\}‘gg"{m’{{\(@{n(ﬂﬁ{{( | \\}\ g ool Ml l({;n/;‘;g'ﬂ)\x il I
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(c) Complex limit cycle, F' = 0.4. (d) Chaotic orbit, F' = 0.7.

Figure 4.4: The chaotic orbits during the cascade.
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The fact that the size of the bifurcations in Figure 4.3(a) diminish so quickly suggests that there
is probably some sort of scaling occurring. In 1978, M. Feigenbaum noted that the ratios of the
distances between two successive bifurcations was constant (Alligood et al., 1996, p. 500). He
derived this number to be, where a,, is the parameter value of the nt* bifurcation,
lim 202 4 669201609 . .

n—=00 (p—1 — Ap
which is today called Feigenbaum’s constant. In Table 1 are the progressive values of the
bifurcations and an estimate of Feigenbaum’s constant.

Table 1: Feigenbaum’s constant estimation.

a FC

0.3429

0.35463

0.357775  3.72973
0.358460 4.59124

w3

Finally, it is important to note that the bifurcation diagram in Figure 4.3(a) is a projection
of the position coordinate of phase space only, such that the velocity was set to zero. This is
because the important dynamics can be discerned quite clearly which is not possible for a 3D
plot. However Figure 4.5 shows a 3D plot of the bifurcation regardless. What is particularly
insightful about this diagram is that it shows how in full phase space the bifurcations cascade
into the chaotic attractor represented in Figure 5.1(b) demonstrating that this really is the
period doubling route to chaos.

Figure 4.5: 3D phase space plot of the cascade of the Duffing Oscillator via the full Poincaré
section for a — 0.5, — —1.

4.4 Basin Boundaries

During the transition to chaos, the basin boundaries also undergo interesting transformations.
The basins of attraction are the subsets of phase space for which the system approaches one
of the fixed points. As has been demonstrated by the periodic orbits of the Duffing Oscillator,
these limit cycles will either be around the positive or negative sink. What is interesting is how
the boundaries of the basins of attraction evolve during the transition to chaos.

Figure 4.6 shows this transition. For F' = 0.035, these basin boundaries are given by the stable
manifold of the unstable saddle at the origin, the boundaries being the stable manifold in Figure
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(a) F =0.035 (b) F =0.078

(c) F =0.106 (d) F =0.120

Figure 4.6: Basin boundary fractalisation during the transition to chaos with a — 0.168, b —
—0.5 (Pezeshki & Dowell, 1987).

3.2(a). This is pre-bifurcation so the system only has its natural fixed points. However as the
forcing value is increased, these boundaries begin to warp and incur on each other. At F' = 0.078,
the basin boundaries are still smooth and well defined, however each basin is beginning to incur
on the other and no longer forms the symmetric spiral. The incursion increases for increasing
forcing amplitude and is a sign of the cascade.

However at F' = 0.106, the basin boundary has significantly changed. The boundary is no
longer smooth but rather demonstrates a fractal structure. The heads and spiral structure of
the original stable manifold can still be seen however the incursion has increased. For further
increasing values of F, FF = 0.120 for example, this structure begins to disintegrate and the
basins of attraction plot approaches static noise. At this point, the transition is complete.

According to Ott (2002, p. 335), this transition from a smooth boundary to a fractal boundary
occurs discontinuously and is called basin boundary metamorphosis. This change occurs
due to the formation of homoclinic intersections described in Section 3.3. Homoclinic points
generate chaotic motion and the jump from a smooth boundary to a fractal boundary occurs
somewhere during the period doubling cascade. Thus it is reasonable to conclude that these
three events, the fractalisation of the boundary basins, the formation of a homoclinic intersection
and the limit of uncountably infinite period doubling all occur for the same F' value and mark
the transition to chaos.
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5 Chaos

Now that the concept of attractors, orbits and the route to chaos has been explored, this section
concerns itself with quantitative measures of chaotic motions. But first a definition of chaotic
motions is needed. Because the majority of chaotic systems are analysed through computational
numerical approximations, it is actually nigh impossible to prove if a system is in fact exhibiting
chaotic behaviour or is simply a periodic orbit with really large k. For practical purposes, the
difference is negligible and thus physicists don’t often concern themselves with it.

Instead, chaotic systems are characterised by the concept of sensitivity to initial conditions
in finite phase space. This describes the phenomena where slightly varying the initial conditions
produces large changes in the system with time such that the system is theoretically fully
determined but practical prediction is basically impossible. Note that the restriction of finite
phase space is to exclude systems that just diverge from a point. Heuristically this is an intuitive
definition of chaos, however to be useful it needs to be formalised. This is the aim of Lyapunov
exponents.

5.1 Lyapunov Exponents

Formally, if a system is chaotic, then orbits which differ slightly in phase space initially should
diverge exponentially over time such that d(t) = dpexp(At) where A is the Lyapunov exponent.
This definition works well for short time scales but since the phase space is finite, it cannot
continue. Hence instead consider the limiting definition for the Lyapunov exponent.

) 1 d(t) .1 ¢

A= tliglo d101§0 n In (do> = lim n In (Dyf'(z) - y) (5.1)
Note that the limit as dy — 0 merely is the change in the function so the Jacobian definition
has also been included where x and y are the paths examined.

Supposing that this limit is well defined (that is that dy approaches 0 faster than ¢ approaches
infinity), then it can be used to characterise the separation along orthogonal dimensions in phase
space. Thus for a three dimensional system like the Duffing Oscillator, the Lyapunov spectrum
should consist of three Lyapunov exponents.

Calculating Lyapunov exponents for dynamical systems is not trivial as most do not have analytic
solutions. Sandri (1996) has created a Mathematica Package that calculates the Lyapunov
exponents for a variety of systems. Table 2 shows some of the Lyapunov exponents for different

Table 2: The two Lyapunov Exponents for various
forcing amplitudes with a — 0.5, b — —1.

F A1 A2

0.1  -0.24967  -0.25033
0.35  -0.10304 -0.39696
0.36  0.0535732 -0.553573

0.7 0.15979  -0.65979

forcing amplitudes. For F' of very low values, the Lyapunov exponents are highly negative and so
nearby orbits are actually attracted together which is in keeping with the idea of them decaying
to a period 1 attractor. During the bifurcation (like at F' = 0.35), the Lyapunov exponents
are still negative indicating attractors but are less powerful. By F' = (.36, the system has
transitioned to chaotic behaviour and A; is positive indicating chaos whilst for F' = 0.7, A; has
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increased threefold and inducing a 20 fold increase in the chaotic motion. Note that there exists
a Az exponent associated with the third dimension but since this is the trivial time equation

t =1, it is constantly zero.

5.2 Chaotic Attractors

In Section 4, it was suggested that the attractors of the period k orbits increased to infinite
with the cascade. This is what generates a chaotic attractor which, as it’s name suggest,
is the limiting cycle for chaotic motion. However an attractor is dense in phase space which

1 0 f—————T—————— . . _
05F .
§
()
>
0.0
-05F i
-1.0 -05 0.0 05 1.0
Position
(a) a — 0.08, b —» —0.8, F — 0.2. One million points are plotted.
6 . . .
06l .
04t .
3 o2f / 1 3
0.0
1 \/ |
-1.0 -05 0.0 05 1.0 >0 v 20
Position Position
(b) =05, b— -1, F = 04 (c) a— 0.05, b— 0, F — T7.5.

Figure 5.1: A selection of Chaotic Attractors.
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means it has an uncountably infinite periodicity so never repeats. What can be said is that after
substantial evolution, the system will be found on the chaotic attractor. In Figure 5.1 there are
a variety of different chaotic attractors for the Duffing Oscillator. Each attractor is unique and
changes based on the parameters given.

Chaotic attractors are dense because they are fractals. A fractal is any geometrical object
which has the same structure given successive magnification; it does not simplify. Figure 5.2
demonstrates this magnification and how it preserves the complexity of the structure. Self

0.94 ; ; ; . - 0.890 p——r=-
o8ssf !
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0.886 1
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0884k
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S os8f 3 o0882p
0.880f
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o0.84r 0876F . .-
-105  -100  -095  -090  -0.85  -0.80 -096 -095 094 -093 -092 -091 -0.90
Position Position
(a) The top left tongue. (b) The bottom band of Figure 5.2(b).

Figure 5.2: Magnifications of the top left tongue of the Chaotic attractor in Figure 5.1(a)

similarity alone seems a somewhat arbitrary and heuristic definition for a fractal so instead
physicists talk about the fractal dimension of a fractal. The problem lies in the fact that there
are many different ways to calculate the fractal dimension and all give subtly different answers.
Fundamentally, the fractal dimension is a dimension, if you calculate the fractal dimension for
a square the answer is two and for a line it is one. Naturally, this dimension only makes sense
for integers. Fractals are those geometric objects with non-integer dimensions.

One way to calculate the fractal dimension is the bor counting method. The box counting
dimension is defined by

boxdim = lim In(N(e))

I T /e) (52)

where ¢ is the length of a n dimensional hypersquare and N (¢) is the number of such hypersquares
required to cover the fractal (Alligood et al, 1996, p. 174). It says that the dimension of the
fractal is the limit of the log ratio between the number of boxes and the inverse length of said
boxes or more intuitively that the number of boxes is given by N(g) = C(1/e)¢. Alligood et al.
(1996, p. 175-7) show that constants are negligible for small ¢, that any sequence of boxes will
suffice and that the ‘boxes’ can be any shape that can cover the fractal.

To get an estimate of this limit, a Log-Log plot can be constructed and the linear model for
decreasing € values will give a good approximation to the dimension. By choosing ¢ = 27", this
task is largely simplified as then the plot of logy(N(27™))/ — n approximates the dimension d.
This is seen in Figure 5.3(a) where the linear model has the equation y = 1.602x + 2.719. Thus
the box counting dimension of fractal 5.1(a) is boxdim = 1.602. This is non integer as expected
and thus the chaotic attractor is clearly fractal.

Another method of calculating the fractal dimension is the correlation dimension which pairs
points together and looks at their limiting ratio. It is attractive because it is defined primarily



G. Leckenby 21

Log2 Number of Boxes
Log2 Ratio of Pairs
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Log2 Box Length Log2 Correlation Radius
(a) Box counting. (b) Correlation.

Figure 5.3: An approximation to the fractal dimension for Figure 5.1(a) via two methods.

for the orbit of a dynamical system. In particular, define the correlation function

Cor(r) = lim #{pairs w1, ws : [wy —wa| <7}

5.3
N—oo #{pairs wy, wa} (53)

where w2 are pairs in the Poincaré section and N is the iterations of the time-27 map. Then
the correlation dimension is given by

cordim = lim M.
r—0  In(r)

(5.4)

Again r = 27" is chosen to approximate the limit thus providing a linear model on logy(Cor(27"))/—
n. This is demonstrated in Figure 5.3(b) where the linear model has the equation y = 1.749x +
0.5357. Thus the correlation dimension of fractal 5.1(a) is cordim = 1.749. As evident this

is slightly different from the box counting dimension (|bd — cd| = 0.147). Both however are
non-integer and are roughly approximate and thus it can be concluded the chaotic attractors
are definitely fractals.

5.3 Evolution of the Poincaré Section

So far the Poincaré section has been viewed with the surface of a section t = 0 mod 27 however
just as valid a section could be produced for any n € [0, 27| giving ¢t = n mod 27. Producing
such a section will show how the chaotic attractor evolves through its 27 period and show the
repetition over the 27 period.

An animation was constructed which shows this evolution and is included in the attached Math-
ematica notebooks. Figure 5.4 shows six evenly spaced snapshots from this animation. As
evident, the lobes and the tongues stretch and morph in a fractal manner. Sections of the lobe
are stretched whilst others are folded but the overall structure remains the same. This is another
demonstration of the self similarity of the chaotic attractor as lobes are magnified and stretched
despite maintaining the same dense structure. In fact the section is topologically identical after
a 27 evolution.

The lobes of the Poincaré section also appear to evolve around the stable fixed points of the
Dulffing potential, (j:\@, 0). Whilst this motion is no where near as regular as the limiting cases
discussed in Section 2.2, the attractive power of these wells is clear as it keeps the chaotic orbit
in a finite phase space and focus’s the time evolution around the stable points of the wells.
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Figure 5.4: Snapshots of the time evolution of a Poincaré section animation. Angle rotates
clockwise around in increments of /3.

Not every attractor shows evidence of this potential, attractor 5.1(c) has a symmetric potential
which is purely cubic. The evolution is actually much more complicated and the centre of the
attractor oscillates back from x = 2.5 to x = —2.5. This more erratic behaviour is probably due

to the larger forcing to damping ratio.
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6 Conclusion

In this report, a nonlinear dynamic system, the Duffing Oscillator, has been extensively exam-
ined to demonstrate the principles of chaotic motion. Limiting cases have been investigated
to show how the Duffing Oscillator collapses to well known standard oscillations like damped
and nondamped nonlinear oscillations. The nonlinearity of the frequency response profile was
examined to show the hysteric dependence of the system on the forcing frequency.

Fixed points of the system were investigated and it was shown that the Duffing Oscillator has
two sinks and an unstable saddle. Analysis of stable manifolds and their intersections with
unstable manifolds, called homoclinic points, revealed a sufficient condition for chaos to occur.

Periodic orbits were then defined which naturally lead to the concept of bifurcations, both
saddle-node and period doubling. Since it always has a stable fixed point for low forcing, it
was identified that the Duffing Oscillator only undergoes period doubling bifurcations. The
concept of a cascade was presented as repetitive period doubling which lead to chaos as the
period approached an uncountable infinity which was ultimately the chaotic attractor. The
fractalisation of the basin boundaries was then investigated to demonstrate this transition to
chaos.

Finally chaotic motions were quantified using Lyapunov exponents and the Lyapunov exponents
were derived for a variety of forcing amplitudes to explain the route to chaos. Chaotic attractors
were then presented using the Poincaré section. Their fractal nature was then determined by a
demonstration of self similarity and the calculation of the box counting fractal dimension and
the correlation dimension. Finally, the evolution of the Poincaré section showed how the folding
and stretching of the attractor left it topologically identical, further cementing the dense fractal
nature of the chaotic attractor.

Thus the Duffing Oscillator has provided a very rich example to demonstrate many important
techniques for characterising chaotic motions.
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