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ABSTRACT

Optical vortices are found everywhere three plane waves intersect and are hence of crucial significance to our understanding of
light. In this report, we describe the theoretical origins of optical vortices and demonstrate some of their fundamental properties
experimentally. In particular, a spiral phase mirror was used to construct a charge 2 optical vortex which was imaged three
dimensionally to analyse the volumetric structure. The charge was determined by using a Michelson interferometer which generated
a forked interference pattern. Finally further research is proposed in the form of phase mappings, observing the decay of high
charge optical vortices and the three dimensional analysis of optical knots and links.

I. INTRODUCTION

For a phenomena that has only been investigated relatively
recently, optical vortices appear with impressive frequency in
nature as they can occur whenever three or more light waves
interfere. In particular they are points in the interference field
characterised by an undefined phase and an associated zero
intensity value [1]. The first investigation into the dislocation
of wave trains was conducted by Nye & Berry [2] and since
then they have garnered extensive theoretical and experimental
interest.

Apart from a purely theoretical interest, there have been many
applications developed for optical vortices. Carpentier et al. [3]
reported on variety of implementations. Vortices can be used
as optical tweezers to trap neutral particles by transferring the
angular momentum associated with the rotation of the phase [4].
They find use in extrasolar planetary observations using optical
vortex coronagraphs by blocking the light from bright stars
to increase the contrast in the image [5]. Finally applications
in quantum information have been proposed employing the
quantised properties of the angular momentum associated with
vortices [6].

In this report, we will investigate the theory behind optical
vortices and demonstrate the generation and interferometric
properties of the vortices.

II. OPTICAL VORTEX THEORY

Optical vortices are characterised by helical wavefronts and
the associated helical mode ψm(r) (Curtis & Grier, 2003) is
given by

ψm(r) = R(r, z)e−ikzeimθ. (1)

The phase factor eimθ describes the phase singularity nature of
the vortex where the integer m is the topological charge of the
vortex and θ is the azimuthal coordinate about the centre of
beam [7]. At r = 0, the phase factor becomes undefined and
the intensity drops to zero as a result such that R(0, z) = 0.
The factor m can take on any integer value but as Leach et al.
[1] point out, any vortex with |m| > 1 is unstable and, in the
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presence of an astigmatism, will decompose to form multiple
vortices of m = ±1 upon propagation.

The phase beam propagates in a helical manner, as visualised
in Fig. 1, and according to the semiclassical approximation,
each photon in this helical mode carries m~ orbital angular
momentum [8]. Thus the beam can exert a torque proportional
to its intensity for particles along the singularity. This orbital
angular momentum is a consequence of the azimuthal structure
of the optical beam and the associated Poynting also has an
azimuthal component resulting in a net flow of energy and
momentum around around the vortex [9] as see in Fig. 1.
Angular momentum and optical vortices are often studied
together however it is important to note that the vortex itself
does not carry any momentum (as it has zero intensity) but
rather the surrounding phase fronts.

Whilst most optical systems are generally decomposed in
terms of Hermite-Gaussian (HG) modes, the natural mode of
an optical vortex is a Laguerre-Gaussian (LG) mode [9]. LG
modes are characterised by ` and p indices which describe
the charge of the optical vortex present in LG modes and the
number of concentric nodes respectively. Similar to HG modes,
LG modes form a complete basis but they are based on vortex
structure inherent to Laguerre polynomials. The first few LG

Figure 1: Surface of con-
stant phase around an optical
vortex; the Poynting vector
is shown in green [9].

Figure 2: The first four
Laguerre-Gaussian modes
for varying `, p indices [9].
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(a) Spiral phase plate. (b) Forked hologram.

Figure 3: Two methods of producing an optical vortex using
a machined spiral phase plate or a forked hologram with a
blazed diffraction grating (O’Holleran, 2008).

modes are shown in Fig. 2
By far the most common way of generating optical vortices is

with a ‘forked’ hologram where an edge dislocation is added to
the centre of a blazed diffraction grating, an example of which
is seen in Figure 3b. This will generate a phase modulation of
mod 2π|mλθ/2π + αx| which generates an optical vortex [9].
These holograms were generalised to be computer generated
holograms using spatial light modulators (SLMs). The SLM
contains an array of pixels upon which a computer image can
be imprinted which defines the spatial variation of phase of
intensity of incoming light. The flexibility of SLMs have made
them extremely popular for generating vortices.

The precision of SLMs are limited by the pixel size and
as a result they cannot generate vortices with charges greater
than a couple of hundred. An alternate method, first proposed
by Beijersbergen et al. [10], is to machine a spiral phase
plate (SPP) as shown in Fig. 3a. Here the required vortex
structure is directly mapped onto the structure given by a
height of mλθ/2π. SPPs can be realised either as a mirror, in
which case the light reflects off the spiral plate and the height
difference imprints the phase structure on the incoming beam.
Alternatively they can also be transparent optical components
with a refractive index n where the optical thickness increases
with the azimuthal angle such that ∆t = θ

2π (n − 1)mλ and
hence upon transmission, the beam acquires the required phase
term [9]. The advantage of SPPs is that the construction
is limited by engineering tolerances rather than pixel size
which allows for beams mostly free of astigmatism and
the construction of much higher charges given the required
engineering prowess. For this experiment, we used mirror SPPs
however the precise construction will be described in further
detail in the following section.

III. GENERATING VORTEX BEAMS

For this project, precision machined spatial phase mirrors
(SPM) were used to produce optical vortices. The SPMs used
were those developed by Shen et al. [7] and the precise
methodology comprises a significant portion of their paper.
In particular, the SPMs are produced by direct machining onto

an aluminium disc using an ultra-high precision single point
diamond turning lathe. For the low charge plates considered
here, a height of d(θ) = mθλ/4π was used however a more
complicated modular height was used for higher charge plates.
Though the machining process does produce some defects,
particularly near the centre of the disc, these have negligible
impact on the quality of the resulting vortex beam [7], especially
for low charge SPMs.

To image the optical vortices, we used the set up pictured
in Fig. 4. For a simple optical vortex, the top arm of the
interferometer was blocked and the rail track fixed. A neutral
density filter was used to ensure the CCD was not overexposed
and the beam width was reduced threefold with a lens array
to ensure the entire pattern fitted on the CCD array. The beam
splitter was adjustably mounted to ensure the TEM00 input
beam from the laser was centred on the SPM. The second
lens array was included for spatial filtering however this was
not used in most measurements as the high spatial frequencies
were noise based rather than from imperfections in the SPM.

The beam was then directed to the CCD. The exposure time
was manually adjusted such that the brightest features in each

Figure 4: The experimental set up which was used to analyse
the various characteristics of optical vortices.

Figure 5: A charge 2 optical vortex after image smoothing.
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(a) yz slice of the vortex propagation. (b) Clipped volumetric intensity density of vortex.

Figure 6: 3D volumetric data from a charge 2 optical vortex. The propagation distance is approximately 55 cm.

image were not overexposed. On top of this, we tried several
de-noising algorithms however 12-sigma Gaussian blurring was
chosen as most of the high frequency information was noise or
diffraction related. A more thorough discussion of the image
handling can be found in Appendix A.

An example of the images produced by this method is shown
in Fig. 5 where a TEM00 input beam is applied to a charge
2 SPM. As predicted, the intensity at the centre of the vortex
is zero whilst a bright ring is seen around the beam axis. A
second, smaller, outer ring is also seen. We believe that this is
generated by an impurity in the LG2

0 mode due to the presence
of the LG1

1 mode which contains an extra circular node as seen
in Fig. 2. This ring was also observed in charge 2 vortices
by Carpentier et al. [3]. Whilst vortices are supposed to have
cylindrical symmetry, it is clear that the observed vortex does
not and is in fact more intense on the lower side of the ring.
We believe this was due to alignment issues with the optical
system as a whole as the input beam was centred on the SPM
for these measurements.

IV. 3D VOLUMETRIC MAPPING

Whilst examining the two dimensional structure of vortices
is interesting, it does not reveal everything about the vortices
themselves. In fact the structure of vortices in three dimensional
space is much more interesting as it can produce much more
complicated systems like knots and links. To this end, we used
the rail track, pictured in Fig. 4, to map the three dimensional
structure of vortex beams by taking slices at various beam
lengths and combining them digitally. In particular, for the
charge 2 vortex presented, the beam length was increased by
sliding the two mirrors backwards on the rail track by 2.5 cm
for 12 different image frames. As a 2.5 cm backwards step
for the rail track apparatus corresponds to a 5 cm increase in
the beam path length, a 55 cm long image of the beam was
produced.

Each frame was 12-Sigma Gaussian blurred and centred
using the symmetry properties of the vortex. The images were
then combined into 3D array which could then be visualised
computationally in a number of ways (more information of the
computational construction of the 3D array can be found in

Appendix A). In particular, we took a longitudinal slice to see
the evolution of the vortex beam which can be seen in Fig. 6a.
As evident, the vortex diverges with increasing distance from
the vortex plate but the structure is maintained.

We were also able to produce more interactive images
of the 3D array. Fig. 6b shows a volumetric intensity plot
which demonstrates the 3D structure of the optical vortex.
This plot has been clipped to remove the intensity associated
with everything below the 60th percentile. It does however
demonstrate the tube-like nature of propagating vortices and,
to some extent, the divergence of cylindrical intensity ring.

Whilst we were not able to produce optical knots in this
investigation, the capabilities for this 3D volumetric imaging
makes visualising them very exciting as we would not only
be able to visualise the dark vortex threads themselves but
the intensity structures associated. Although they could not be
included in a static report, we were also able to construct
animations which scan the 3D structure both parallel and
perpendicular to the cylindrical axis of symmetry.

V. INTERFEROMETRIC ANALYSIS

Intensity analysis can demonstrate many properties of optical
vortices however they are fundamentally a phase based phenom-
ena and hence we need to turn to interferometric measurements.
Phase is a purely relative concept and to make any phase
measurements, you need to introduce an interferometer. In
particular, a simple Michelson interferometer was introduced
as seen in Fig. 4. Because the input beam needs to be centred
on the SPM, the SPM was placed on the transmitted beam
and both the beam splitter and ordinary mirror were placed
on adjustable mounts such that the interferometer could be
aligned. This was then used to make several different phase
measurements to infer properties of optical vortices.

Since vortices of varying charge do not have noticeably
different intensity profiles, you can utilise interference with
a reference beam to determine the charge of the vortex. This
is seen in Fig. 7 where the reference beam has been slightly
tilted horizontally such that the overlapping beams have slightly
different wave-vectors k. Fig. 7b is the theoretical formulation
of what these interference patterns will look like assuming the
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(a) Observed planar phase interference pattern for charge 2 vortex.

(b) Theoretical interference patterns for planar (left) and spherical
(right) phase provided by Carpentier et al. (2008).

Figure 7: Interference patterns produced by slightly tilting the
reference can reveal the charge of an optical vortex, in this
case a charge 2 vortex.

reference beam has planar and spherical phase respectively. In
the planar case, which is the form observed experimentally in
Fig. 7a, the parallel interference lines converge at the optical
vortex where m2π units of phase are absorbed. In this case,
it can be seen that two interference lines are absorbed and
thus we conclude that the charge of the vortex is m = 2.
Unfortunately, the experimental image is marred by a defect
precisely at the optical vortex which prevents us from seeing
the recombination of the interference lines. The exact cause of
this defect was not investigated however the general principles
remain clear.

Aligning the beams directly produces a slightly different
interference pattern. Given that the incoming beam was
Gaussian and the vortex beam has a phase term of eimθ,
there are m points where the two beams differ by π and total
destructive interference occurs. The perfect example of this is
seen in Fig. 8a which was a result determined by Carpentier et
al. [3] which clearly shows the two destructive dots predicted.
Note that in this case, the charge 2 vortex has decayed into 2
charge 1 vortices when the initial vortex is made to copropagate
with the reference beam. When we tried to replicate a similar
image, the result was less than successful as seen in Fig. 8b.
A slight circular interference pattern can be seen and thus it
appears that there was a slight curvature difference between the
reference and vortex beam. If this curvature difference could

be corrected, then the desired pattern should emerge.
O’Holleran [9] demonstrated that the reference beam can also

be used to create phase maps of the vortex itself. In particular,
the interference pattern will be altered when the relative phase
of the reference beam is changed by changing the arm length of
the interferometer. By assigning each pixel an intensity value
for each relative phase measurement and varying the phase
over an entire 2π phase evolution, the intensity of the pixel can
be linked to the relative phase and thus a phase map produced.
Whilst very useful for determining precise vortex locations and
phase structure, this method is quite hard to implement and
we were unable to replicate it due to time pressures. For future
investigations however, this would be a promising next step to
analysing vortex systems.

VI. FUTURE INVESTIGATIONS

Whilst we were able to observe many of the important
properties of optical vortices, there were several phenomena
mentioned in section II that we did not have the time to
observe. It was predicted that due to the presence of astigmatism
in the beam, high charge vortices will decay into single
charge vortices. whilst this was unable to be achieved in a
3D volumetric mapping, if the phase maps (described above)
could be produced over the 3D volume, the position of the
vortices could be tracked directly. This could also be achieved
by getting the interference pattern in Fig. 8 to work effectively
and observing the propagation.

In this project, we only worked with a charge 2 vortex. It
would be instructive to work with higher charges and investigate
the propagation and interference patterns produced. Higher
charges are more unstable and hence decay faster. Observing
this decay chain via 3D phase mapping and the interaction of
interference patterns for multiple copropagating high charge
vortices would be challenging and illuminating in regards to
the additive properties and interactions of optical vortices.

In addition to simple propagation, optical vortices can also
be used to produce static knots and links of dark vortex lines
in light waves. This was theoretically predicted by Berry &
Dennis [11] and was realised experimentally by Leach et al. [1]
where they were able to construct temporally stable knots and
links. SPMs can theoretically be used to to produce arbitrary

(a) Results from Carpentier et al.
(2008) demonstrating two points
of destructive interference.

(b) Our observation of aligned
interference although the curvature
of the beams vary.

Figure 8: Aligning the interference beams should produce two
points of destructive interference in the following interference
pattern.
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wavefronts by a finite sequence of phase modulation and Fourier
transformations [7]. Hence, given the appropriate theoretical
templates, any interesting wavefronts could be machined to
high precision. This can be used to construct complex features
like optical knots and particle traps from a single TEM00 beam.
Whilst constructing the SPM templates is beyond the scope of
this report, our set up is capable of imaging such vortices.

There are other systems which produce optical vortices.
O’Holleran [9] reported on an analysis of the umbilic diffraction
catastrophe. This is an interference pattern produced by diffrac-
tion through a bulged triangular lens, most easily constructed
from filling a triangular aperture with a drop of water. The
following diffraction pattern contains both vortex loops and
lines separated into two distinct regimes. This topological
structure provides extensive information on 4- and 3-wave
interference and would provide deep insights into the presence
of optical vortices in nature.

VII. CONCLUSION

In this report we have investigated some of the theoretical
properties of optical vortices and realised those predictions ex-
perimentally. In particular, optical vortices have been described
as light beams with helical wavefronts associated with an az-
imuthal phase component of eimθ such that a phase singularity
is generated at the centre of the beam with a corresponding
zero intensity. Several methods of generating optical vortices
were suggested however spiral phase mirrors were chosen due
to their high precision. An optical vortex of charge two was
then imaged and the bright ring with zero intensity at the
centre was observed. A 3D volumetric density image of this
vortex was then constructed by combining multiple images
taken at increasing distances from the phase mirror. Finally, a
Michelson interferometer was used to observe the diffraction
pattern produced by tilting a planar phase reference beam which

showed the convergence of two interference lines at the vortex
demonstrating the vortex was indeed charge two. A method
of producing phase maps was proposed to more effectively
track vortex propagation and future work was suggested in
characterising the decay of higher charge vortices and imaging
optical knots. Thus we have demonstrated experimentally many
of the characteristics that make optical vortices appealing for
multiple applications.
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APPENDIX A: CONSTRUCTING A 3D INTENSITY ARRAY WITH PYTHON

One of the most challenging aspects of this project was constructing the 3D intensity array from the snapshots imaged. In
this appendix, we will present the code used to do this and explain the motivation behind some our choices.

The first step was choosing how to denoise the images. In particular, there was both background noise associated with light
from the laboratory and high frequencies introduced by defects in the optical system. To remove the statistical variation from
the background noise, a Rudin-Osher-Fatemi total variation denoising algorithm was implemented as ROF denoising preserves
structure of the image whilst smoothing the micro-variations. However, as seen in Fig. 9b, it was found that ROF denoising
maintained too many of the high spatial components and thus was ineffective in denoising the image. Instead we used the
scipy Gaussian filter to apply a 12-sigma Gaussian blur. This produced the intensity profiles seen in Fig. 9a which are much
smoother whilst still maintaining the broad structure of the optical vortex. After this the background level was removed by
subtracting the average intensity value of 4 50× 50 squares from each corner of the image.

Due to imperfections in the optical set up, each image was centred slightly differently. It was important to centre the images
on the vortex itself otherwise the various components wouldn’t match up when combined. The program was initially tested on
a Gaussian beam after a lens and hence centring the beam on the brightest pixel was a good proxy for the centre of the beam
line. However the intensity of the beam for an optical vortex is zero by definition on the centre of the beam line. Thus the
centre was instead determined by a intensity weighted average over all the pixels. Since the vortex was cylindrically symmetric
along the beam axis, this weighted average gave the centre of the vortex. Each image was cropped such that the volume was
rectangular. Finally the image was combined into the desired 3D array which was saved externally using h5py.

The code which achieved this is presented below:

import numpy as np
from PIL import Image
import os
import scipy.ndimage.filters

def createArray(imfold, sta, end, inv):
’’’ This script takes raw bitmap images, converts them to numpy arrays, gaussian filters

them, subtracts the mean background noise level and crops and centres the images into
an array.

Inputs: ’imfold’ - string specifying the folder containing the CCD images.
’sta, end, int’ - integers determining the separation naming convention.

Outputs: a 3-dimensional numpy array of floats acting as a 3D beam profile. ’’’

filist, cenlist, imlist, arrlist = [], [], [], []
maxx, maxy = -1, -1

# Creates a list of file names to be examined.
for i in range(sta, end, inv):

filist.append(os.path.abspath(’CCD Images/’ + imfold + ’/D+’ + str(i) + ’.bmp’))

(a) A 12-sigma Gaussian filter. (b) ROF denoising filter.

Figure 9: Above are several intensity profiles for x slices of an observed optical vortex for both Gaussian filtering and ROF
denoising.
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for i in filist:
with Image.open(i).convert(’L’) as im:

# Converts image to array, gaussian filters the image and subtracts background noise.
imar = np.array(im, ’f’)
imarf = scipy.ndimage.filters.gaussian_filter(imar, 12)
(dimx, dimy) = imarf.shape
bkgrnoise = np.mean([imar[0:50, 0:50], imar[0:50, dimy - 50:dimy], imar[dimx -

50:dimx, dimy - 50:dimy], imar[dimx - 50:dimx, 0:50]])
imarf = imarf - bkgrnoise
imlist.append(imarf)

# Calculcates centre of interference pattern
avgpix = [0, 0]
for m in range(dimx):

for n in range(dimy):
avgpix = [avgpix[0] + int(imarf[m, n]) * m, avgpix[1] + int(imarf[m, n]) * n]

finavgpix = [avgpix[0] / (m * n * imarf.mean()), avgpix[1] / (m * n * imarf.mean())]
cenlist.append(finavgpix)

# Iteratively checks for most off centre image.
if abs(finavgpix[0] - 512) > maxx:

maxx = abs(finavgpix[0] - 512)
if abs(finavgpix[1] - 620) > maxy:

maxy = abs(finavgpix[1] - 620)

imlist = np.stack(imlist)
maxwidth, maxheight = int(512 - maxx - 1), int(620 - maxy - 1)

# Crops images and forms them into an 3-dimensional array.
for i in range(len(filist)):

cenx, ceny = cenlist[i]
cenim = imlist[i, int(cenx) - maxwidth:int(cenx) + maxwidth, int(ceny) -

maxheight:int(ceny) + maxheight]
arrlist.append(cenim)

# Returns the 3-dimensional beam image.
return np.stack(arrlist)

The 3D array constructed will have dimensions of pixels squared by the number of images. As the number of images is usually
two orders of magnitude smaller than the number of pixels in each image, the 3D array often needs to be interpolated along the
z axis. To do this, scipy.ndimage.interpolation.zoom was used which does linear interpolation of arrays. From
the 3D array, any image or slice can be taken using standard python graphics packages. To produce the volumetric density
plots, Mayavi was used, in particular mlab.pipeline.volume(mlab.pipeline.scalar_field(array)).


